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Similarity reduction of a (2 + 1) Volterra system
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Chennai-600 005, Tamilnadu, India
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Abstract. The continuous point symmetries of a (2 + 1) discrete Volterra system is derived and
it forms a centreless infinite-dimensional Kac–Moody Virasoro algebra. Using the symmetries,
a similarity reduction of the (2 + 1) Volterra system to a partial differential-difference equation
with two independent variables is obtained. Also, the Lie point symmetries of the reduced partial
differential-difference equation is derived and its similarity reduction to an ordinary differential-
difference equation is obtained. The ordinary differential-difference equation reduces to the third
Painlevé equation in the continuum limit. Further, a Lax pair for the reduced equation is derived
indicating its complete integrability.

It is well known that the discovery of Norwegian mathematician Sophus Lie at the beginning of
the nineteenth century on the integration theory of differential equations has played a vital role
in investigations into different mathematical aspects of soliton systems governed by continuous
equations during the past few decades. The primary objective of the Lie symmetry analysis
advocated by Sophus Lie is to find one- or several-parameter local continuous transformations
leaving the equations invariant and then exploit them to obtain the so-called invariant or
similarity solutions, invariants, integrals of motion, etc [1–3], and the usefulness of this
approach has been widely illustrated by several authors in different contexts [4–8]. This
method, essentially to derive Lie symmetries of continuous systems (differential equations), has
been recently extended to discrete systems governed by differential-difference and difference
equations and it has been shown how to derive the continuous symmetries and the associated
group-theoretical properties [9–16].

It is of interest in discrete nonlinear systems to analyse the nature of equations (or solutions)
in higher dimensions, whose lower-dimensional counterparts are solvable by inverse scattering
transform methods. Ablowitz et al [17] have conjectured that every ordinary differential
equation obtained by similarity reduction of an inverse scattering solvable partial differential
equation is completely integrable. In [11] one of the authors of this letter has shown that the
above conjecture holds for (1 + 1) inverse scattering transform solvable partial differential-
difference equations as well. In this letter, we investigate whether such a result holds for higher-
dimensional discrete nonlinear systems. In particular, we wish to show that the similarity
reduction of a (2 + 1) Volterra system

∂

∂t
cn + σ 2 ∂

∂y
wn = cn(c

2
n−1 − c2

n+1) (1a)

∂

∂y
(cncn−1) = cnwn−1 − cn−1wn (1b)
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where σ 2 = ±1, cn = c(n, y, t), wn = w(n, y, t), y and t are continuous variables and n

is a discrete variable, admits a Lax pair indicating its complete integrability. We also show
that the similarity reduction reduces to the third Painlevé equation in the continuum limit. We
wish to mention that the (2 + 1) Volterra system (1a), (1b) is solvable by the inverse scattering
transform [18] and that the continuum limit of it reduces to the well known Kadomtsev–
Petviashvile equation while its (1 + 1) case (wn = 0, cn = c(n, t)) reduces to the well known
Volterra system

∂

∂t
cn = cn(c

2
n−1 − c2

n+1) (2)

and is solvable by the inverse scattering transform technique.
Consider a one-parameter (ε) Lie group of continuous point transformations,

n∗ = n t∗ = t + εξ1 + O(ε2) y∗ = y + εξ2 + O(ε2) (3a)

c∗
n∗ = cn + εξ3 + O(ε2) w∗

n∗ = wn + εξ4 + O(ε2) (3b)

where ξi = ξi(n, t, y, cn, wn), i = 1, 2, 3, 4, are infinitesimals and the associated infinitesimal
generator is

X = ξ1(n, y, t)
∂

∂t
+ ξ2(n, y, t)

∂

∂y
+ ξ3(n, y, t)

∂

∂cn
+ ξ4(n, y, t)

∂

∂wn

. (3c)

The (2 + 1) Volterra system, equation (1), is invariant under the transformations (3) if
∂

∂t∗
c∗
n∗ + σ 2 ∂

∂y∗w
∗
n∗ = c∗

n∗(c
∗2
n∗−1 − c∗2

n∗+1) (4a)

∂

∂y∗ (c
∗
n∗c

∗
n∗−1) = c∗

n∗w
∗
n∗−1 − c∗

n∗−1w
∗
n∗ (4b)

provided cn and wn satisfy equations (1a), (1b). Making use of the expressions for ∂
∂t∗ c

∗
n∗ ,

∂
∂y∗ c

∗
n∗ and ∂

∂y∗ w
∗
n∗ [2, 3] in equation (4), after some calculations we find ξ1(n, y, t, cn, wn) =

ξ1(t), ξ2(n, y, t, cn, wn) = ξ2(y, t), ξ3(n, y, t, cn, wn) = ξ3(t, cn), ξ4(n, y, t, cn, wn) =
ξ4(y, t, cn, wn) and the following invariance equation:

(ξ3,t + σ 2ξ4,y) − (ξ2,t − σ 2ξ4,cn )cn,y + (ξ3,cn − ξ1,t )cn,t + σ 2(ξ4,wn
− ξ2,y)wn,y

−(c2
n−1 − c2

n+1)ξ3 − 2cn(cn−1ξ3(n − 1) − cn+1ξ3(n + 1)) = 0 (5a)

and

ξ3cn−1,y + ξ3(n − 1)cn,y + (ξ3,cn−1(n − 1) − ξ2,y(n − 1))cncn−1,y

+(ξ3,cn − ξ2,y)cn−1cn,y − cnξ4(n − 1) − ξ3wn−1 + ξ4cn−1

+ξ3(n − 1)wn = 0 (5b)

where subscripts denote partial differentation, that is ξ3,t = ∂ξ3

∂t
, cn,t = ∂cn

∂t
, ξ3,y(n − 1) =

∂ξ3(n−1)
∂y

, etc.
Solving equations (5a), (5b) we obtain

ξ1(n, y, t) = h(t) ξ2(n, y, t) = 1
2 ḣ(t)y + σ 2k(t) (6a)

ξ3(n, y, t) = − 1
2 ḣ(t)cn ξ4(n, y, t) = [k̇(t) + 1

2σ
2yḧ(t)]cn − ḣ(t)wn (6b)

where h(t), k(t) are arbitrary functions and ḣ = dh
dt and so the infinitesimal generator (3c)

takes the following form:

X = h(t)
∂

∂t
+

1

2
yḣ(t)

∂

∂y
− 1

2
ḣ(t)cn

∂

∂cn
+

[
1

2
σ 2yḧ(t)cn − ḣ(t)wn

]
∂

∂wn

+σ 2k(t)
∂

∂y
+ k̇(t)cn

∂

∂wn

. (7)



Letter to the Editor L173

It is straightforward to check that the commutators X1(h) and X2(k) satisfy the following
relations:

[X1(h1),X1(h2)] = X1(h1ḣ2 − h2ḣ1)

[X1(h),X2(k)] = X2(hk̇ − 1
2kḣ)

[X2(k1),X2(k2)] = 0

and thus the underlying symmetry algebra is of centreless Kac–Moody–Virasoro type. Thus the
(2 + 1) Volterra system, equations (1a), (1b) with two continuous independent variables (y, t)
and one discrete independent variable n shares a property so far observed only for integrable
nonlinear systems with three continuous independent variables. A similar observation for the
(2 + 1) Toda lattice system was pointed out by Levi and Winternitz [10].

Next, the similarity variable and the similarity transformation associated with the above
set of symmetries (ξ1, ξ2, ξ3, ξ4), equations (6a) and (6b), can be obtained by solving the
characteristic equation

dt

ξ1
= dy

ξ2
= dcn

ξ3
= dwn

ξ4
. (8)

For clarity of presentation we consider h(t) to be linear in t and k(t) = 0 (the derivation of
similarity variables and similarity transformation for arbitrary h(t) and k(t) is a straightforward
one) and so the infinitesimal symmetries (6a), (6b) become

ξ1 = at + a1 ξ2 = 1
2ay ξ3 = − 1

2acn ξ4 = −awn (9)

where a, a1 are arbitrary constants.
Solving the above characteristic equation (8) we obtain the following similarity variables:

η1 = n and η2 = y

(at + a1)
1
2

(10a)

and the similarity transformations f (η1, η2) and g(η1, η2) take

f (η1, η2) = (at + a1)
1
2 cn and g(η1, η2) = (at + a1)wn. (10b)

Substituting the similarity transformations, equation (10b) along with similarity variables (10a)
in the Volterra system, equations (1a) and (1b), we find that it reduces into a partial differential-
difference equation with two independent variables (η1, η2) (one discrete, one continuous):

aη2
∂f

∂η2
+ af − 2σ 2 ∂g

∂η2
= 2f (η1, η2)[f

2(η1 + 1, η2) − f 2(η1 − 1, η2)] (11a)

and
∂

∂η2
[f (η1, η2)f (η1 − 1, η2)] = f (η1, η2)g(η1 − 1, η2) − g(η1, η2)f (η1 − 1, η2). (11b)

Now again treating equations (11a), (11b) as a partial differential-difference equation in
two independent variables η1 and η2, we make another infinitesimal transformation in η1, η2,
f and g

η∗
1 = η1 + εφ1 + O(ε2) η∗

2 = η2 + εφ2 + O(ε2) (12a)

f ∗(η∗
1, η

∗
2) = f (η1, η2) + εφ3 + O(ε2) g∗(η∗

1, η
∗
2) = g(η1, η2) + εφ4 + O(ε2) (12b)

where φi = φi(η1, η2, f, g), i = 1, 2, 3, 4 are infinitesimals and the infinitesimal generator Y
is

Y = φ1
∂

∂η1
+ φ2

∂

∂η2
+ φ3

∂

∂f
+ φ4

∂

∂g
. (12c)
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Equations (11a), (11b) are invariant under the transformations (12a), (12b) if

aη∗
2
∂f ∗

∂η2∗
+ af ∗ − 2σ 2 ∂g∗

∂η2∗
= 2f ∗(η∗

1, η
∗
2)[f

∗2
(η∗

1 + 1, η∗
2) − f ∗2

(η∗
1 − 1, η∗

2)] (13a)

and
∂

∂η∗
2

[f ∗(η∗
1, η

∗
2)f

∗(η∗
1 − 1, η∗

2)]

= f ∗(n∗
1, n

∗
2)g

∗(n∗
1 − 1, n∗

2) − g∗(η∗
1, η

∗
2)f

∗(η∗
1 − 1, η∗

2) (13b)

provided f (η1, η2) and g(η1, η2) satisfy equations (11).
Proceeding as before we find that for the following infinitesimal symmetries:

φ1 = −β φ2 = bη2 + b1 φ3 = −bf φ4 = −2bg +
a

σ 2

(
bη2 +

b1

2

)
f (14)

equations (13a, b) satisfy simultaneously where β, b, b1 are arbitrary constants and the
infinitesimal generator Y , equation (12c), becomes

Y = −β
∂

∂η1
+ (bη2 + b1)

∂

∂η2
− bf

∂

∂f
+

[
−2bg +

a

σ 2

(
bη2 +

b1

2

)
f

]
∂

∂g
. (15)

Here the generators Y1, Y2 and Y3 become

Y1 = − ∂

∂η1
Y2 = ∂

∂η2
+

a

2σ 2
f

∂

∂g

Y3 = η2
∂

∂η2
− f

∂

∂f
+

[
−2g +

a

σ 2
f η2

] ∂

∂g

and the commutation relation satisfies

[Y1, Y2] = 0 [Y1, Y3] = 0 [Y2, Y3] = Y2

indicating that the underlying symmetry algebra of (11a), (11b) is nilpotent.
In order to obtain the similarity variable and the similarity transformation associated

with the above set of symmetries (φ1, φ2, φ3, φ4), equation (14), we solve the Lagrange
characteristic equation

dη1

−β
= dη2

bη2 + b1
= df

−bf
= dg

−2bg + a
σ 2 (bη2 + b1

2 )f
. (16)

Solving the above characteristic equation (16) we obtain a similarity variable,

ζ = η1 +
β

b
log(bη2 + b1) (17a)

and the similarity transformations F(ζ ) and G(ζ) become

F(ζ ) = (bη2 + b1)f G(ζ ) =
[
g − a

2σ 2
η2f

]
(bη2 + b1)

2. (17b)

Substituting the similarity transformations, equation (17b), along with the similarity variable,
equation (17a), we find that the partial differential-difference equation, equations (11a) and
(11b), reduces into an ordinary differential-difference equation:

σ 2

[
β

dG

dζ
− 2bG(ζ )

]
= F(ζ )[F 2(ζ − 1) − F 2(ζ + 1)] (18a)

and

β
d

dζ
[F(ζ )F (ζ − 1)] − 2bF(ζ )F (ζ − 1) = F(ζ )G(ζ − 1) − G(ζ)F (ζ − 1). (18b)
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Next, it is known that the (2 + 1) Volterra system (1a), (1b) possesses Lax representation
and so is solvable through the inverse scattering transform technique [18]. For σ 2 = 1 the Lax
representation for the similarity reduction of the (2 + 1) Volterra system becomes(
β

d

dζ
+ 2bλ

d

dλ

)
R(ζ, λ) = F(ζ )R(ζ − 1, λ) − F(ζ + 1)R(ζ + 1, λ) (19a)

λR(ζ, λ) = G(ζ)R(ζ − 1, λ) − G(ζ + 1)R(ζ + 1, λ) + F(ζ )F (ζ − 1)R(ζ − 2, λ)

−F(ζ + 1)F (ζ + 2)R(ζ + 2, λ) (19b)

where λ is a spectral parameter. The compatibility condition of equations (19a), (19b) gives
the reduced equations (18a), (18b). Thus the reduced equations (19a), (19b) are expected to
be integrable. A similar conclusion can be drawn for the case σ 2 = −1.

To find the continuum limit of the reduced equations (18a), (18b) we introduce the
following transformations:

F(ζ ) = e
φ(ζ )

2 G(ζ) = e
φ(ζ )

2 A(ζ )

and so equations (18a), (18b) become

σ 2

[
β

(
1

2
A(ζ )

d

dζ
φ(ζ ) +

d

dζ
A(ζ )

)
− 2bA(ζ )

]
= eφ(ζ−1) − eφ(ζ+1) (20a)

β

2

[
d

dζ
(φ(ζ ) + φ(ζ − 1))

]
− 2b = A(ζ − 1) − A(ζ ). (20b)

The above equations (20a), (20b) can be rewritten as

βσ2

2

[
β

d2

dζ 2
(φ(ζ ) + φ(ζ − 1)) + A(ζ − 1)

d

dζ
φ(ζ − 1) − A(ζ )

d

dζ
φ(ζ )

]

+2bσ 2[A(ζ ) − A(ζ − 1)] = eφ(ζ+1) − eφ(ζ−1) + eφ(ζ−2) − eφ(ζ ). (21)

By choosing φ(ζ ) = 1 + εv(ζ ), A(ζ ) = −2
σ 2 [4 − σ 2 + v(ζ )ζ ], β = ε and b = ε3 and then

substituting in equation (21) we find that it reduces to

d2v

dζ 2
+

1

ζ

dv

dζ
+

1

v

(
dv

dζ

)2

= 0

which is the third Painlevé equation.
The derivation of conditional symmetries and generalized symmetries including Lie

Backlund symmetries of the Volterra system (1a), (1b) as well as the details of the singularity
confinement criterion of (18a), (18b) (a discrete version of the Painlevé property) proposed by
Grammaticos et al [19] will be published elsewhere.

This work forms part of a research project funded by the Department of Science and Technology,
Government of India, New Delhi.
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